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Pattern formation and a clustering transition in power-law sequential adsorption
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We present a model that describes adsorption and clustering of particles on a surface. Aclusteringtransition
is found that separates between a phase of weakly correlated particle distributions and a phase of strongly
correlated distributions in which the particles form localized fractal clusters. The order parameter of the
transition is identified and the fractal nature of both phases is examined. The model is relevant to a large class
of clustering phenomena such as aggregation and growth on surfaces, population distribution in cities, and
plant and bacterial colonies, as well as gravitational clustering.@S1063-651X~99!50404-2#

PACS number~s!: 64.60.Ak, 61.43.Hv, 68.55.2a, 82.20.Mj
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Many of the growth and pattern formation phenomena
nature occur via adsorption and clustering of particles
surfaces@1,2#. The richness of these phenomena may be
tributed to the great variety of structures and symmetries
the adsorbed particles and substrates. Nonequilibrium gro
models often give rise to fractal structures, which are sta
tically self-similar over a range of length scales@3#. In a
large class of surface adsorption systems, the dominant
namical process is thediffusion of the adsorbed particles
which hop randomly on the surface until they nucleate i
immobile clusters@2#. The formation of fractal clusters,
which are typical in these systems, can be described by
diffusion-limited aggregation~DLA ! process@4#. In DLA a
cluster of particles grows due to a slow flux of particles th
diffuse as random walkers until they attach to the clus
The model describes a great variety of aggregation proce
such as island growth in molecular-beam epitaxy@2#, elec-
trodeposition, viscous fingering, dielectric breakdown, a
various biological systems@5#. In many other physical sys
tems, once an adsorbed particle sticks to the surface it
comes immobile. These systems can be described
random-sequential-adsorption~RSA! processes@6#. Within
the RSA processes, one should distinguish between sys
in which particles cannot overlap and systems in which th
can adsorb on top of each other. Systems in which parti
cannot overlap tend to reach a jamming limit, in which t
sticking probability of a new particle vanishes@7#. Models
that allow multilayer growth describe a large class of phy
cal systems, including deposition of colloids, liquid crysta
@8#, polymers, and fiber particles@9,10#. Recently, the case o
power-law distribution of particle sizes was studied both
uncorrelated adsorption@11# and for nonoverlapping par
ticles @12#. In the case of uncorrelated adsorption, it w
found that the boundary of the particle clusters is fractal@11#.
For nonoverlapping particles, it was found that the area
remains exposed is fractal@12#.

Models that describe growth dynamics have been e
ployed in recent years in a vast range of scientific fields
diverse as city organization and growth@13,14#, city and
highway traffic@15#, and growth of bacterial colonies@16#. A
common feature is the tendency of the basic objects to f
clusters of high density~typically of fractal shape!, sur-
PRE 591063-651X/99/59~5!/4713~4!/$15.00
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rounded by low density areas or voids. Other examples
clustering appear in the distribution of mass in the unive
@17#, in dissipative gases and granular flow@18#, as well as in
step bunching on crystal surfaces during growth@19# and due
to electromigration@20#. The phenomenon of cluster forma
tion is therefore generic in a broad class of systems in s
of the fact that the pattern-forming dynamical processes m
vary substantially from system to system. This richness
clustering phenomena is not yet fully backed up by app
priate models.

In this paper, we present the power-law sequent
adsorption~PLSA! model, which describes a variety of su
face adsorption and clustering processes. This model lea
a rich variety of structures, many of which are fractal, whi
mimic the experimental morphologies found in the examp
cited above. In particular, it exhibits a uniqueclusteringtran-
sition that separates between a weakly correlated phas
which the adsorbed particles are distributed homogeneo
on the surface and a strongly correlated phase in which t
form clusters.

In the PLSA model, circular particles of diameterd are
randomly deposited on a two-dimensional~2D! surface one
at a time. The deposition process starts from an initial s
where there is one seed particle on the surface. The stic
probability 0<p<1 of a newly deposited particle is dete
mined by the distancer from its center to the center of th
nearest particle already on the surface. This probability
given by

p~r !5H 1 r<d

~d/r !a r .d,
~1!

where the exponenta>0 is a parameter of the model. Th
model thus exhibits a positive feedback clustering, like ma
of the clustering phenomena listed above. The random de
sition process is repeated until the desired number of p
ticlesM stick to the surface. Since the sticking probability
given by a power-law function, which is of a long rang
nature, this process should have been studied, in principle
the infinite system limit. Numerical simulations, howeve
are done on a finite system of areaL3L, whereL/d@1. The
R4713 ©1999 The American Physical Society
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coverage is given byh5A/L2, where A is the total area
covered by the particles. Also, leth05p(d/2)2M /L2.

The limit of uncorrelated adsorption, in which the stick-
ing probability is uniformlyp51 is obtained fora50. This
limit was studied recently using fractal analysis, and the b
counting and Minkowski functions were calculated analy
cally @21#. It was found that for a range of low coverage
apparent fractal behavior is observed between physically
evant cutoffs. The lower cutoffr 0 is given by the particle
diameterr 05d while the upper cutoffr 1 is given by the
average gap between adjacent particles, namely,r 15r21/2

2d, wherer5M /L2 is the particle density.
The limit of strongly correlated adsorptionis obtained for

a→`. In this case only a single, connected cluster is gen
ated on the surface. The perimeter of this cluster gro
slowly when new particles are deposited on its edge, whil
becomes more dense inside@9,10#.

We will now examine the morphological properties of t
configurations of adsorbed particles for the full range o
,a,` using fractal analysis. For this analysis we use
box-counting~BC! procedure in which one covers the pla
with nonoverlapping boxes of linear sizer . The box-
counting functionN(r ) is obtained by counting the numbe
of boxes that have a nonempty intersection with the~fractal!
set. A fractal dimensionDBC , is declared to prevail at a
certain range of length scales if a relation of the ty
NBC(r );r 2DBC holds or, equivalently, if the slope of th
log-log plot

DBC52slope$ log r , log@NBC~r !#% ~2!

is found to be constant over that range.
Two configurations of particles, randomly deposited a

adsorbed according to Eq.~1! onto the unit square (L51),
are shown in Fig. 1 forh050.01. Fora51.5 the particle
distribution exhibits local density fluctuations but on larg
scales it is rather homogeneous and extends over the e
system@Fig. 1~a!#. For a52.5 we observe a strongly clus
tered structure@Fig. 1~b!#. This structure resembles the set
turning points of a Le´vy flight random walker@22#. In fact, a
Lévy flight corresponds to the special case in which
sticking probability of the next deposited particle depen
only on the position of the latest particle adsorbed on
surface. Unlike Le´vy flights, which typically describe dy-
namic behavior, our model describes clustering in spa
structures. It is also related to other models of spatial str
tures such as the continuous percolation model, which is
proached when the interaction is suppressed, ata→0. An-
other related model, which describes the growth of
percolation cluster and exhibits power-law correlations
tween growth sites is presented in Ref.@23#.

The box-counting functions for the configurations gen
ated by the PLSA model are shown in Fig. 2. It is observ
that fora,2 the box-counting function resembles the sha
obtained for the uncorrelated case@21#. This indicates that
the basic features of the model studied in Ref.@21# are main-
tained not only for short range correlations but for an en
class of long range correlations. The box-counting funct
for a.2 exhibits a nearly linear behavior for the enti
range from the particle size to the cluster size.
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To obtain the fractal dimensions of the sets from the b
counting functions, one should identify the relevant range
length scales over which the linear fit should be done.
the weakly correlated distributions the relevant range
length scales spans the range fromr 05d to r 15r21/22d
@21#. For the strongly correlated distributions where clust
are formed, the relevant range is limited from above by
linear size of the entire cluster. The quality of the linear fit
measured by the coefficient of determinationR 2 @21#. In
both cases, given a desired value ofR 2 one can further
narrow the range within the cutoffs described above to fi
the broadest range (r 0 ,r 1) within which the linear regression
maintains the given value ofR 2 @24#.

The fractal dimensionD as a function ofa is shown in
Fig. 3 for h050.1, 0.01, and 0.001. Two domains are ide
tified: a plateau of low dimension for the weakly correlat
case and a plateau of high dimension for the strongly co
lated case.

Consider a seed particle located at the origin of an infin

FIG. 1. Particles adsorbed on the surface of a unit squareL
51) according to the PLSA model forh050.01. ~a! For a51.5 we
observe density fluctuations at small scales; however, at la
scales the distribution is rather homogeneous and extends ove
entire system.~b! For a52.5 we observe a strongly clustered stru
ture and vacant area elsewhere. The number of particles in bot~a!
and ~b! is 3184 and their diameter isd50.002.
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plane. Particles are randomly deposited one at a time acc
ing to the PLSA model until one particle sticks to the su
face. Consider the probability that the distancer between the
first particle that sticks and the seed particle at the origin w
be larger than some valuer f , wherer f.d. This probability
is given by

P~r .r f !5
* r f

` 2pr ~d/r !adr

*0
d2prdr 1*d

`2pr ~d/r !adr
. ~3!

One readily verifies that fora,2 the probabilityP(r .r f)
51 for any finiter f . Fora.2, on the other hand, this prob
ability is given by

FIG. 2. The box-counting function for four configurations wi
h050.01, anda50 ~empty circles!, 1.5 ~full circles!, 2.5 ~empty
squares!, and 3.5~full squares!. It is observed that fora,2 the
shape of this function resembles that of the uncorrelated case
a.2, where strongly clustered distributions arise, there is a br
scaling range. The units are dimensionless and the logarithms a
base 10.

FIG. 3. The fractal dimension of the configurations produced
the PLSA model as a function ofa ~in dimensionless units! for
h050.1 ~empty circles!, 0.01 ~full circles!, and 0.001 ~empty
squares!. A plateau of low dimension is found for the weakly co
related limit and a plateau of high dimension for the strongly c
related limit.
rd-
-

ll

P~r .r f !5
2

a S d

r f
D a22

. ~4!

Therefore, in the infinite system limit of the weakly corr
lated phase (a,ac), the probability that the next particle
will stick within any finite distance from an existing cluste
is zero @25#. In the strongly correlated phase (a.ac), the
probability that the next particle will stick within a finite
distancer f from the cluster can be made arbitrarily close
one, by an adjustment ofr f according to Eq.~4! @26#. In
general, the value ofac for which the clustering transition
takes place is equal to the space dimension.

The order parameter of the clustering transition isV
5(h02h)/h0 , namely, the fraction of the total area of th
adsorbed particles lost due to overlap. Consider a finite n
ber M of particles of diameterd51 adsorbed on the surfac
in the infinite system limit (L→`). For a,2, in this low
coverage limit overlaps are negligible andV50. For a.2,
clusters become more dense and overlaps more domina
a increases. Our numerical studies are done on a finite
tem of sizeL51 for a range of coverages. The order para
eterV as a function ofa, for h050.01, is shown in Fig. 4.

To examine the critical behavior in the infinite syste
limit, we performed analytical calculations in one dimensi
~1D!. In 1D the configuration is fully specified by the o
dered list ofM21 gaps between theM particles. For the 1D
case, we have obtained the critical exponentb for the order
parameterV;(a2ac)

b in the L→` limit by constructing
the probability distributionPi , i 50, . . . ,M that the next
particle that sticks will stick within the gapgi ~whereg0 and
gM are the two semi-infinite gaps on both sides!. The overlap
was then calculated as a weighted average over all gaps.
result we obtain is that the exponentb51. We also found
that the fractal dimension exhibits critical behavior of t
form D;(a2ac)

g, whereac51 with the exponentg51.
For the weakly correlated phase ata,1 the fractal dimen-
sion in theL→` is D50 while for a.2 the dimension is
D52.
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FIG. 4. The order parameter of the clustering transition,V
5(h02h)/h0 , is shown as a function ofa for h050.01. It repre-
sents the fraction of the total area of the adsorbed particles lost
to overlap. Forh0!1, this order parameter vanishes fora,2 and
increases abovea52.



ti
o

us
,
g
c
i

ons
ted

ted
del
ing

RAPID COMMUNICATIONS

R4716 PRE 59BIHAM, MALCAI, LIDAR, AND AVNIR
In summary, we present a model for random sequen
adsorption characterized by a power-law distribution
sticking probabilities. This model exhibits a continuo
phase transition between weakly correlated adsorption
which the particle distribution is homogeneous on lar
scales and extends over the entire system, and strongly
related adsorption, in which a highly clustered structure
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generated. We thus identified a broad class of distributi
that maintain the basic properties of the weakly correla
random structures studied in Ref.@21# and found the border-
line between this class and the class of strongly correla
structures that exhibit clustering phenomena. The mo
should be useful in the study of a great variety of cluster
problems.
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