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We associate with every quantum channelT acting on a Hilbert spaceH a pair of Hermitian operators,
referred to as “Hamiltonians,” over the symmetric subspace ofH^2. The expectation values of these Hamil-
tonians over symmetric product states give either the purity or the pure-state fidelity ofT. This allows us to
analytically compute these measures for a wide class of channels, and to identify states that are optimal with
respect to these measures.
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I. INTRODUCTION

The study of open quantum systems[1] is of interest in
fields as diverse as quantum information science[2], quan-
tum control [3], and foundations of quantum physics[4].
Such systems can be described, very generally, using the
following formalism. LetTPCPsHd be a completely posi-
tive (CP) trace-preserving quantum map, i.e., achannelover
the finite-dimensional quantum state spaceH. The channelT
has a(nonunique) Kraus operator sum representation[5]

TsXd = o
i

AiXAi
†, fX [ EndsHdg, s1d

where the Kraus operatorsAi satisfy the constraintoiAi
†Ai

=1, which guarantees preservation of the trace of a state
(density operator) X=r. A fundamental property of a state is
its purity pfrg=Trsr2d. States are called pure if and only if
p=1 and mixed if p,1. In the paradigmatic scenario of
open quantum systems, a state starts out as pure,r= uclkcu,
and is then mapped, e.g., via the interaction with an environ-
ment, to a mixed state by the action of a channelT:
pfTsrdg=TrfTsuclkcud2g,1. In this case we say that the state
ucl has beendecoheredby the channel. A typical goal of,
e.g., quantum information processing, is to maximize the pu-
rity of a state that is transmitted via some channelT. To this
end, a variety of decoherence-reduction techniques have
been developed, such as quantum error correcting codes
(QECCs) [6–9] and decoherence-free subspaces(DFSs)
[10,11]. In this work we are interested in the intrinsic purity
of quantum channels: In the following, unless otherwise
specified, all state vectorsucl’s (and uCl’s) will be normal-
ized.

Definition 1. The purity of the channelT over the sub-
spaceC,H is

PsT,Cd ª min
ucl[C

TrfTsuclkcud2g. s2d

Minimization is required since we must consider the
worst-case scenario. We invoke subspaces in our definition

since we know from the theory of QECCs and DFSs that it is
possible to encode quantum information in a manner that
maximizes purity by restricting to a subspace. In particular:

Definition 2. If PsT,Cd=1 we say that thatC is a
decoherence-free subspace with respect toT, in short, a
T-DFS.

In many cases it will not be possible to find aT-DFS. A
central question we shall be concerned with here is the char-
acterization of those states that optimally approximate a
T-DFS, i.e., those states for whichPsT,Cd is as large as
possible. Thus:

Definition 3.The optimal purity ofT is

PsTd ª max
C,H

PsT,Cd. s3d

Note thatPsTd=1⇔ the set ofT-DFSs is nonempty. How-
ever, this situation is rather rare and generally requires that
there be asymmetryin the system-environment interaction.
Associated with this symmetry is a conserved quantity:
quantum coherence. This in turn leads to the preservation of
quantum information. Here we wish to depart from the no-
tion of a strict symmetry and explicitly consider the situation
where one can only expect optimal, as opposed to ideal,
purity. However, the optimization problem defined byPsTd
is a hard one, since it involves a search over all possible
subspacesC,H; the number of such subspaces grows quite
rapidly in the dimension ofH, which itself may be exponen-
tial in the number of particles, in a typical quantum informa-
tion processing application. Moreover, even if one restricts
the problem to the computation ofPsT,Cd (for a given, fixed
subspace), one is still faced with a complicated-looking func-
tional.

In this work we focus on the the computation ofPsT,Cd
and we associate a Hamiltonian with each channel. This
“channel Hamiltonian” is a mathematical trick, rather than a
physical Hamiltonian. But, as we shall show, this has the
advantage in that it allows us to cast the purity problem into
the familiar framework of computing eigenvalues of Hermit-
ian operators. In addition, we show that our channel Hamil-
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tonian leads to an elegant physical(re-) interpretation of the
channel purity in terms of the expectation value of theSWAP

operator.
Our work is also related to questions about channel ca-

pacity; indeed recently it has been shown that multiplicativ-
ity of generalized maximal purities implies additivity of the
minimal output entropy of the quantum channel. The latter,
in turn, is equivalent to the additivity of the Holevo channel
capacity[12].

We introduce the first channel Hamiltonian in Sec. II. We
then derive a number of properties and bounds on the purity
based on this formalism in Sec. III. We then devote Sec. IV
to a number of examples designed to illustrate our formal-
ism, and derive some interesting properties for a class of
channels. In Sec. V we derive an alternative interpretation of
the expression for the channel purity, in terms of a dual map.
It turns out that the same methods we introduce for the chan-
nel purity also apply to the pure-state fidelity of the channel.
In particular, we can introduce a second-channel Hamil-
tonian to this end. This is addressed in Sec. VI. We conclude
in Sec. VII.

II. A HAMILTONIAN OPERATOR
FOR QUANTUM CHANNELS

Associated with the channelT we define an operator over
H^2:

Definition 4.The channel purity Hamiltonian is

VsTd ª o
i j

Vi j
†

^ Vi j , Vi j = Ai
†Aj . s4d

[We shall refer toVsTd simply as the “channel Hamil-
tonian” until our discussion of the pure-state fidelity in Sec.
VI.] It follows immediately fromVi j

† =V ji that VsTd is a
symmetric, Hermitian operator. Thus,VsTd has the status of
a Hamiltonian overH^2. Moreover,VsTd is independent of
the particular Kraus operator-sum representation chosen for
T: all possible operator-sum representations ofT are obtained
by considering new Kraus operators of the formAi8
=o jUijAj, where theUij ’s are the entries of unitary matrix.
By inserting this expression into the definition(4) one can
explicitly check thatVsTd is invariant.

We now come to our key result: a representation of the
purity of quantum channels as the expectation value of the
channel Hamiltonian. Letuc^2l;uc^l2 (we will use both
notations interchangeably).

Proposition 0.For every quantum channelT and subspace
C, one has the identity

PsT,Cd = min
ucl[C

kc^2uVsTduc^2l. s5d

Proof. One has

Tr T2suclkcud = o
i j

kcuAj
†AiuclkcuAi

†Ajucl = o
i j

ukcuAj
†Aiuclu2

= o
i j

Trfuclkcu^2Aj
†Ai ^ Ai

†Ajg

= Trfuclkcu^2VsTdg. s6d

Equation (5) now follows by taking the minimum over
ucl[C. j

Note thatVsTd is a formal Hamiltonian over the “double”
Hilbert spaceH^2, and is therefore unrelated to the physical
Hamiltonian for the original problem. However, as we show
below, there does exist an attractive physical interpretation of
Eq. (5), in terms of the expected value of theSWAP operator.

III. BOUNDS AND OTHER CHANNEL PROPERTIES

We now derive upper and lower bounds on the purity and
then give a characterization ofT-DFSs.

Proposition 1.Let v0
+sAd denote the minimum eigenvalue

of the symmetric operatorA in the symmetric subspace of
H^2, and letP+sCd denote the normalized projector over the
symmetric part ofC^2. Then the following bounds hold:

TrfP+sCdVsTdg ù PsT,Cd ù v0
+fVsTdg. s7d

Proof. Note that sinceVsTd is a symmetric operator, the
symmetric subspace ofH^2 is VsTd invariant. Therefore, the
minimum expectation value ofVsTd in this subspace coin-
cides with the minimum eigenvaluev0

+. The lower bound in
Eq. (7) is simply due to the fact that minimization over the
symmetric subspace ofH^2 includes the minimization over
the ucl^2[C^2. The upper bound in Eq.(7) derives from the
identity eCuclkcu^2=P+sCd (integration over the uniform dis-
tribution over C [13]) and from the obvious fact that the
average value of a function is no smaller than its minimum
value. j

Lemma 1.Let T be unitalfTs1d=1g. Then∀ucl[H:

iVsTducl^2i ø 1. s8d

Proof. Let pij ª iAj
†Aiucli. One has the following normal-

ization condition

o
i j

pij
2 = o

i j

kcuAi
†AjAj

†Aiucl = o
i

kcuAi
†Aiucl = 1,

where in the first(second) equality we used the unitality(CP
map) conditiono jAjAj

†=1 soiAi
†Ai =1d. Now

iVsTducl^2i = io
i j

Aj
†Aiucl ^ Ai

†Ajucli ø o
i j

iAj
†Aiucli

3iAi
†Ajucli = o

i j

pij pji ø o
i j

pij
2 = 1, s9d

where in the last line we used the Cauchy-Schwartz inequal-
ity for the Hilbert-Schmidt product of matrices,

o
i j

pij pji = Tr P2 = kP,P†l ø iPi iP†i = iPi2 = o
i j

pij
2 .

j
We now proceed to characterizeT-DFSs. To this end we

introduce a special subspace:
Definition 5. The subspaceHV of V-invariant states

sHV,H^2d is the eigenspace ofV with eigenvalue one.
Proposition 2.
(i) If ∀ucl[C and ∀i, it holds that Aiucl=aiUucl,

Ai
†ucl=ai

*U†ucl, whereU is unitary, thenucl^2[HV.
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(ii ) Let T be unital. ThenC is a T-DFS⇔C^2,HV.
(iii ) T-DFS⇔ the first inequality in Eq.(7) is an equality.
Proof.
(i) Notice first that from the CP map condition,oiAi

†Ai
=1, it follows that oiuaiu2=1. Now for ucl[C, one has that
kc^2uVsTduc^2l=oi j uaia ju2=soiuaiu2d2=1

(ii ) (⇒) If C is a T-DFS then minucl[Ckc^2uVsTduc^2l
=1. But from the Cauchy-Schwartz inequality and Lemma 1
above, one has that kc^2uVsTduc^2lø1 s∀ucld,
and the equality holds if and only ifVsTduc^2l= uc^2l
s∀ucl[Cd. Now, if uCl is in the symmetric part ofC^2, one
has that uCl=P+sCduCl=asCdeCuc^2lkc^2uCl [where
asCdªdim Csdim C+1d]. Therefore,

VsTduCl = asCdE
C

VsTduc^2lkc^2uCl

= asCdE
C

uc^2lkc^2uCl. s10d

It follows that uCl[HV.
(⇐) If ∀ucl[C it holds thatucl^2[H1

V, thenC is clearly
a T-DFS, i.e.,PsT,Cd=1. A fortiori, this holds if all the ele-
ments of the symmetric part ofC^2 are inHV.

(iii ) We have just seen that∀uCl= ucl^2 such that
ucl[C, one haskCuVsTduCl=1. By integrating overucl, one
obtains that the average[leftmost part of Eq.(7)] coincides
with the minimum[middle term in Eq.(7)]. j

IV. EXAMPLES

We now present a variety of examples to illustrate our
formalism, to actually compute the purity of a number of
interesting channels, and to find the corresponding optimally
pure states.

Example 1. Single qubit anisotropic depolarizing channel.
Let T be the one-qubit channel given byr→oi=0

3 pis
irsi,

where thesi’s are the Pauli matricesss0=1d and thepi’s a
probability distribution. One findsV01=V10=Îp0pis

0si

=Îp0pis
i; Vi j =−V ji = iÎpjpiei jksk si =1,2,3d; Vii =pi1, si

=0, . . . ,3d. It then follows that

VsTd = o
i=0

3

ais
i

^ si , s11d

where a0=oi=0
3 pi

2, ak=2sp0pk+pipjd si Þ j Þk,k=1,2,3d.
Note that oi=0

3 ai =soi=0
3 pid2=1, that a0[ f1/4,1g, and

ak[ f0,1/2g, sk=1,2,3d. The eigenstates ofVsTd are the
Bell statesuc−l=su01l− u10ld /Î2 (singlet) and huf−l=su00l
− u11ld /Î2,uc+l=su01l+ u10ld /Î2,uf+l=su00l+ u11ld /Î2j
(triplet). Their respective eigenvalues are 2a0−1 and h1
−2a1,1−2a3,1−2a2j. Furthermore, note that
SpecVsTd, f−1/2,1g and thatVsTd in the triplet sector is a
positive operator. The triplet sector is symmetric, while the
singlet is antisymmetric. From Eq.(7), we thus know that the
minimal eigenvalue in the triplet sector provides a lower
bound on the purity

PsTd ù 1 − 2 max
i=1,2,3

ai ù 0 s12d

(of course in this single-qubit example there are no nontrivial
subspaces:C=H). In this general case we cannot directly
determine the actual purity or find the corresponding maxi-
mally robust state(s), since the Bell triplet states are not
product states. To find the optimal purity states in such a
case, one has to resort to other optimization techniques.
However, in certain special cases the eigenstates ofVsTd will
be product states, whence our method directly yields the op-
timally robust states. For instance, consider the casep0=p1
=1/2 andp2=p3=0; one findsVsTd=s1+sx ^ sxd /2. In this
caseuc−l , uf−l are degenerate, as areuc+l , uf+l. We then find,
respectively, the symmetric product eigenstatesfsu0l
− u1ld /Î2g^2 and fsu0l+ u1ld /Î2g^2, both with eigenvalue 1.
The statesu± l : =su0l± u1ld /Î2 are thus bothT-DFSs. This is
intuitively clear, as the channel in this case is simplyTsrd
=por+p1sxrsx, and the statesu± l lie on the Bloch spherex
axis, which is invariant.

As another example, consider the fully depolarizing chan-
nel with pi =s1−p0d /3, si =1,2,3d. Then the following(anti-
ferromagnetic Heisenberg exchange) Hamiltonian is ob-
tained: VsTd=a01+aoi=1

3 si ^ si, wherea0=p0
2+s1−p0d2/3,

a=s2/3dfp0s1−p0d+s1−p0d2/3gù0. We can rewrite this as
VsTd=a01+as2S−1d, where theSWAP operatorS is defined
by its action on basis statesSuil ^ u jl= u jl ^ uil. In this case,
clearly every symmetric product state is an eigenstate of
VsTd, with eigenvaluea0+a, which equals the channel pu-
rity. Thus all single-qubit states are equally(and optimally)
robust. Again, this is intuitively clear: the fully depolarizing
channel isotropically shrinks the Bloch sphere.

Example 2. Correlated two-qubit anistropic depolarizing
channel.

Consider the correlated map

Tsrd = o passa ^ sadrssa ^ sad. s13d

ThenVab=Îpapbsasb ^ sasb and

V = o
a=0,x,y,z

pa
2sI ^ Id^2 + o

aÞbÞg

papbssg ^ sgd^2.

s14d

This example can be solved directly by observing that each
of the Bell states has eigenvalue +1 or −1 under the action of
sg ^ sg, when the purity is one. Thus, the Bell states are
T-DFSs. Notice that this result appears to be related to the
communication problem for channels with correlated noise
studied in Ref.[17].

One can also find theminimal purity states by differenti-
ating kVlª^2kcuVsTducl^2 as a function of expansion pa-
rameters of ucl over the Bell states. This yieldskVlmin

=oa=0,x,y,zpa
2, and the corresponding minimally robust set of

states are superpositions of pairs of Bell states with arbitrary
phases

uc1l =
eia1

2
su00l + u11ld +

eib1

2
su01l − u10ld,
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uc2l =
eia2

2
su00l − u11ld +

eib2

2
su01l + u10ld.

This channel thus has the interesting property that the maxi-
mally entangled Bell states are more robust than any sepa-
rable (pure) state.

Example 3. Amplitude damping.
Let Tsrd= u0lk0u, ∀ r[SsCdd. A set of Kraus operators is

given by Ai = u0lki u, si =1, . . . ,dd. Note that the channel is
nonunital: oiAiAi

†=du0lk0u.1. One hasAj
†Ai = u jlki u, so that

VsTd=oi j u jlki u ^ uilk j u=oi j u ji lki j u=S (the SWAP operator).
Here all states are mapped onto a pure one andVsTd is
identically 1 in the symmetric subspace. A slight generaliza-
tion is given byTsrd=s1−pdr+pu0lk0u, sp[ f0,1gd. In this
case one finds

VsTd = s1 − pd21 + p2S+ ps1 − pdsu0lk0u ^ 1 + 1 ^ u0lk0udS.

s15d

Note that iVsTdiø s1−pd2+p2+2ps1−pd=1. The only
T-DFS isCu0l.

Example 4. Projective measurements.
Let Tsrd=oiPirPi, PiP j =di jPi, oiPi =1. Then Vi j

=di jPi, from which

VsTd = o
i

Pi ^ Pi . s16d

If HiªIm Pi thenHi
^2,HV, i.e., from Proposition 2 all the

eigenvectors of thePi’s are one-dimensional(1D) T-DFSs.
The maximum eigenvalue ofVsTd is 1; this follows from
kCuVsTduClø1s∀uCld. The latter inequality results from the
following argument: 1^2=soiPid^2=oi jPi ^ P j =VsTd
+oiÞ jPi ^ P j. The last term is a non-negative operator(sum
of products of non-negative operators), so that1−VsTdù0.
Taking the expectation value of the last inequality with re-
spect touCl proves the bound above.

In the following, we use the operator normiAi`

ªmaxi uclu i=1iAucli. We shall writeiAi for simplicity.
Example 5. Unitary mixture of a group representation.
This is a rather general and quite important example,

which includes Examples 1 and 2 above. Let

Tsrd = o
g

pgUgrUg
†, s17d

whereg°pg is a probability distribution over the groupG
=hgj andg°Ug is a unitary representation ofG. One finds
Vgh=ÎpgphUg

†Uh=ÎpgphUg−1h; thus

VsTd = o
k[G

qkUk ^ Uk−1, s18d

where qkªogpgpgk−1 is also a probability distribution. If
ucl[H is a G singlet, i.e., Ugucl= ucl s∀ g[Gd then
ucl^2[HV, i.e., all the G singlets are 1DT-DFSs. Here
again, the maximum eigenvalue ofVsTd is 1: Indeed, it is
easy to see thatiVsTd i ø1: iVsTd i øokqkiUk ^ Uk−1i

=ok qk=1.

As a particular instance of this kind of channel, let us
consider anN-qubit case with theUk’s generating an Abelian
subgroup ofG the Pauli group(all tensor products of Pauli
matrices onN qubits), as was the case in Examples 1 and 2
above. The set ofG singlets is now given by the stabilizer of
G [denotedSsGd], i.e., the subspace generated by theucl
such thatUkucl= ucl s∀ kd. SinceUk=Uk

†, one finds imme-
diately that elements of the formucl^2, whereucl[SsGd, are
eigenvectors ofVsTd with maximum eigenvalueok qk.
These states also play the role of code words of stabilizer
QECCs[8]. We thus see that, in this example, the stabilizer-
QECC code words are maximally robust, though no active
error correction is assumed.

In fact, the connection to quantum error correction can be
made more general: the formalism developed so far allows
us to establish an intriguing identity for the purity of states
belonging to a QECCC for the CP mapT: r→oi AirAi

†. If
ucal , ucbl[C, then the error correction condition is

kcauAi
†Ajucbl = cijdab, s19d

where the matrixcij is Hermitian, non-negative, and has
trace one[7]. For nondegenerate codes,cij has maximal rank.
Let us now consider states of the formucal^2 sucal[Cd.
From Eq.(4) and the error correction condition, one has that

PsT,Cd = kca
^2uVsTduca

^2l = o
i j

ukcauAi
†Ajucalu2

= o
i j

ucij u2 = Trsc2d. s20d

Viewing c as a state(density operator), we have thus found
that the purity of the channel acting on the code words ofC
is just the purity of the “state”c associated to the code itself.
For example, for DFSs,c is simply a rank-one matrix with
unit trace[14], so that Trc2=1 and the maximum eigenvalue
condition is readily recovered. As a more interesting ex-
ample, consider aCP mapT with Ai =ÎpiUi with unitaryUi’s
(e.g., chosen from the Pauli group, as in stabilizer QEC).
Recall thatc=l†l, where the matrixl is defined by the
error-recovery relationRrAi =lri1 (restricted toC), for each
recovery operatorRr [7]. ThenRr =lriUi

−1/Îpi, and from the
CP condition or Rr

†Rr =1, we find or ulri u2=pi. Assume for
simplicity that there is a unique recovery operator per error,
i.e., lri =lidri , li Þ0 ∀ i (this is an example of a nondegen-
erate code). Thenuliu2=pi andc=diagspid; it follows that the
purity over such a QECC associated toT is simply given by
oi pi

2.

V. THE DUAL REPRESENTATION

We now develop an alternative representation of the chan-
nel Hamiltonian, which is useful for the derivation of several
additional results, and sheds light on the physical interpreta-
tion of the channel purity.

Definition 6.The dualT* of a CP mapT [see Eq.(1)] is
T*sXd=oi Ai

†XAi.
Proposition 3. Let S be the SWAP operator (defined

above). Then
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VsTd = T*
^2sSdS. s21d

We give two different proofs.
Proof.

(a)

T*
^2sSdS= o

i j

sAi
†

^ Aj
†dSsAi ^ AjdS= o

i j

sAi
†

^ Aj
†dsAj ^ Aid

= o
i j

Ai
†Aj ^ Aj

†Ai = VsTd. s22d

(b) By writing the SWAP operator explicitly asS
=olm umlkl u ^ ullkmu and applying T*

^2, one obtains
olm,i j Ai

†umlkl uAi ^ Aj
†ullkmuAj. Then the proof follows by ex-

plicitly comparing the matrix elements of the latter operator
timesS, with the ones ofVsTd. j

We remark that one is led to consider the operatorT*
^2sSd

by the following argument:

TrfT2srdg = TrfShTsrd ^ Tsrdjg = TrfST^2sr ^ rdg

= TrfT*
^2sSdr ^ rg,

where in the first step we used the identity

TrfABg = TrfSA^ Bg, s23d

which is valid for general operatorsA, B [15], and in the last
step we “dualized” the map. Then for pure inputsr= uclkcu
one haskc^2uVsTduc^2l=kc^2uT*

^2sSduc^2l. This dualization
is quite useful since it moves the burden of calculation of the
channel action away from the entireset of statesr to the
singleobservableS.

Corollary 1. Upon restriction to the symmetric subspace
of H^2, one can writeVsTd=T*

^2sSd.
Proof. Immediate. j
The following corollary contains a general derivation,

based on the dual representation ofVsTd, of a fact that was
already proved for specific examples in Sec. IV.

Corollary 2. iVsTdiø1.
Proof. One has iVsTdi=iT*

^2sSdSiø iT*
^2sSdi iSi

ø iT*
^2sSdi. Since T*

^2 is the dual of aCP map, elements
smaller (greater) than the identity(minus the identity) are
mapped onto elements smaller than the identity. Since −1
øSø1, one has −1øT*

^2sSdø1. This relation implies in par-
ticular that the maximum eigenvalue of the Hermitian opera-
tor T*

^2sSd is smaller than one. Since this maximum eigen-
value coincides with thei ·i` norm of T*

^2sSd, the inequality
is proved. j

We now present a result that allows one to directly com-
pute theaveragepurity of a quantum channel.

Proposition 4.The Haar average purity of theCP mapT
is given by

TrfT^2suclkcudgc =
1

dsd + 1d
TrfST^2s1d + VsTdg. s24d

Proof.Using the fact thatedcuclkcu^2 is the normalized pro-
jector over the symmetric subspace ofH^2, i.e., s1
+Sd / fdsd+1dg [13], one has

E dc TrfT*
^2sSduclkcu^2g =

TrfT*
^2sSds1 + Sdg
dsd + 1d

=
1

dsd + 1d
TrfST^2s1d + T*

^2sSdSg.

s25d

j
In other words, the Haar average purity of a channelT is

given by the expectation value ofVsTd over the maximally
mixed stateP+sHd=s1+Sd / fdsd+1dg over the symmetric
subspace ofH^2.

Corollary 3.Using Eq.(24) one can get the Haar averaged
purities of the channels considered above:

(i) One qubit depolarizing channel:s1+2a0d /3.
(ii ) Amplitude damping channel: s1−pd2+p2+2ps1

−pd /d.
(iii ) Projective measurements:fd+oisTr Pid2g / fdsd+1dg.
(iv) Unitary mixing: fd+og[G qguTr Ugu2g / fdsd+1dg.

From (iii ) and (iv), it follows that:
(a) One-dimensional projective measurements achieve

the minimal average purity, of 2/sd+1d.
(b) For unitary mixing and assuming a Haar uniform

distribution(all qg equal, i.e., the fully depolarizing channel),
minimal purity is obtained forUg’s in a G irrep. Indeed, one
has in general thats1/uGudog[G uTr Ugu2=oJ nJ

2, wherenJ is
the multiplicity of the Jth G irrep [16]. The minimum is
clearly achieved when just one irrep appears, i.e., the irre-
ducible case.

Before concluding this section we would like to point out
that the formulakCuVsTduCl=TrfST^2suClkCudg allows us
to give an operational meaning to the operatorV, and in the
particular case in whichuCl= ucl^2, to the purity of
Tsuclkcud. Indeed, this expectation value ofVsTd is nothing
but the expectation value of the observableS in the state
T^2suClkCud. The latter state can in turn be viewed as the
result of an action of the channel on a pair of, possibly en-
tangled, input states fromH.

VI. PURE STATE FIDELITY OF A CHANNEL

We now show how many of the techniques introduced
above for the channel purity carry over to the(simpler) prob-
lem of calculating the

Definition 7.Pure-state fidelity

FsT,ucld ª kcuTsuclkcuducl. s26d

Proposition 5.
(i)

FsT,ucld = kc^2uV1sTduc^2l, s27d

whereV1sTdª s1 ^ T*dsSdS.
(ii )

V1sTd = o
i

Ai ^ Ai
†. s28d
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(iii )

FsT,ucldc =
1

dsd + 1d
TrfV1sTd + S„1 ^ Ts1d…g. s29d

In particular, for a unital map the average pure-state fidelity
is given byfd+oiuTr Aiu2g / fdsd+1dg.

Proof.
(i)

FsT,ucld = kcuTsuclkcuducl = TrfuclkcuTsuclkcudg

= TrfSuclkcu ^ Tsuclkcudg = TrfSs1 ^ Tduclkcu^2g

= Trfs1 ^ T*dsSduclkcu^2g

= kc^2us1 ^ T*dsSdSuc^2l.

(ii )

s1 ^ T*dsSdS= o
i

s1 ^ Ai
†dSs1 ^ AidS= o

i

s1 ^ Ai
†dsAi

†
^ 1d

= o
i

Ai ^ Ai
†.

(iii )

FsT,ucldc =E
c

Trfuclkcu^2V1sTdg

=
Trfs1 + SdV1sTdg

dsd + 1d

=
TrfV1sTd + s1 ^ T*dsSdg

dsd + 1d
.

Notice that the second term inside the square brackets is, for
unital maps, simply TrS=d. j

Is important to stress thatV1sTd defined above is, in gen-
eral,non-Hermitian. On the other hand,V1sTdS=s1 ^ T*dsSd
is Hermitian (image of an Hermitian operator viaCP map)
and has the same expectation values asV1sTd over symmet-
ric states inH^2. We thus associate a second channel Hamil-
tonian withT.

Definition 8.The channel fidelity Hamiltonian is

V8sTd ª s1 ^ T*dsSd. s30d

We now report, as corollaries of point(iii ) above, the
average pure-state fidelities of a few relevant channels.

Corollary 4.
(i) Mixing of unitaries from the Pauli group(N qubits):

s1+2Np0d / s1+2Nd.
(ii ) Mixing of general unitaries:fd+oipiuTr Uiu2g / fdsd

+1dg.
(iii ) Amplitude damping: 1−ps1−1/dd.
(iv) Projective measurements:fd+oiuTr Piu2g / fdsd+1dg.
As in the channel-purity case, the result(29) can be sim-

ply stated by saying that the Haar average fidelity of a chan-
nel T is given by the expectation value ofV1sTd over the
maximally mixed stateP+sHd=s1+Sd / fdsd+1dg over the
symmetric subspace ofH^2. We note that a formula related
to Eq.(29) for the average fidelity of quantum operations has
been given in Ref.[18].

VII. CONCLUSIONS AND OUTLOOK

We have introduced a “Hamiltonian” operator formalism
for the calculation of the channel purity and pure-state fidel-
ity. Using this formalism we have been able to analytically
compute these measures for a variety of channels of interest
in the theory of open quantum systems, and quantum infor-
mation theory. These analytical results are restricted to cases
where the eigenstates of the HamiltonianV (or V8) are prod-
uct states in the symmetric subspace ofH^2. When this is
not the case one may have to resort to numerical methods to
compute the purity and fidelity.

A tempting generalization of our method is to consider
perturbations to the channel Hamiltonian and use the well-
developed tools of perturbation theory to thus study pertur-
bations to given channels. One may further speculate about
an adiabatic approximation, wherein slowly time-dependent
channels can be studied using the adiabatic theorem applied
to the channel Hamiltonian. We leave these as subjects for
future investigations.
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